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It is well understood that energy rich polyatomic molecules do not dissociate promptly because the number,
P, of their energy states far exceeds the number, N, of the decay channels. In the simplest RRK theory, the
fraction N/P is the probability of dissociation. We discuss the distribution of the decay rates of maximal
entropy and conclude that it is governed by at most N linearly independent constraints, N < P, or, more
typically, N < P. This mathematical requirement already severely restricts the number of constraints. Beyond
it however, on physical grounds, one constraint, or at most a few, may be dominant. We discuss why just one
constraint, or a few but less than N, can be sufficient to describe the product state distribution.

1. Introduction

A characterization of a distribution by the formalism of
maximum entropy' is possible in a variety of physical situations.
These include ordinary thermal equilibrium? but also a great
variety of systems which are neither large® nor have many
degrees of freedom. In all such applications, what one seeks to
do is to determine a distribution that is subject to constraints
that the distribution should satisfy and whose entropy is
maximal. It can be shown that this distribution if it exists is
unique. Even though the distribution itself is unique, it can be
written down in more than one way. Of course, these alternative
ways are equivalent. Some of these ways correspond to imposing
constraints that are not linearly independent. If so, the number
of constraints can be reduced or equivalently some of the
constraints are redundant. In this paper, we discuss the elimina-
tion of redundant constraints with special reference to physi-
cochemical situations where the origin of the redundancy can
be demonstrated.

We emphasize that the notion of linear dependency of
constraints is not quite identical to the mathematical notion of
linear dependency. The notion that we need depends also on
the state of the system. Toward making this point in a physical
context, we begin with a well-studied example: ordinary
chemical equilibrium at a given temperature. The minimal set
of constraints is clear.*’ It is energy and the number of atoms
of each chemical element. (A more pedantic statement is the
conservation of the number of atoms of each isotope of each
chemical element.) Instead of maximizing the entropy, one can,
equivalently, minimize the free energy at a given temperature
and the number of atoms of each chemical element. As a
concrete example, take a dilute gaseous mixture of hydrocar-

7 Part of the “George C. Schatz Festschrift”.

* Joint corresponding authors. E-mail: fremacle@ulg.ac.be (F.R.);
rafi@fh.huji.ac.il (R.D.L.).

£ The Hebrew University of Jerusalem.

$ Université de Ligge.

! Directeur de Recherches, FNRS (Belgium).

YThe University of California, Los Angeles.

10.1021/jp811463h CCC: $40.75

bons. We then need just the conservation of carbon and of
hydrogen. In the language of free energy, two chemical
potentials suffice to specify the composition of the system. To
see this, take the case of normal octane, n-CgH;s. Because the
system is in chemical equilibrium, the particular reaction n-CgHg
== 8C + 18H is also at equilibrium. Of course, this equilibrium
is very much to the left but it is a reaction at equilibrium because
at equilibrium all possible reactions are at equilibrium. There-
fore, the chemical potential of n-octane necessarily satisfies
Un-cgiis = Suc + 18uy. The same considerations apply to all
other hydrocarbons. Therefore the chemical potentials uc and
uy suffice to determine the chemical potentials of all hydro-
carbons that are present at chemical equilibrium. Textbooks
often make life simple for the undergraduate student by arguing
that at equilibrium the concentration of each and every species,
including n-octane, is conserved. There are then numerous
constraints, as many as the number of different species that are
present in the mixture that is in chemical equilibrium. These
constraints are valid but at the same time redundant. Each and
every one of the many Lagrange multipliers that correspond to
the many species is a linear combination of the far fewer
Lagrange multipliers that correspond to the elements. The
general expression of this linear dependence is

z Al (1

elements i

u speciesn =

where a,; is the stoichiometric coefficient, namely, how many
atoms of element i are present in one molecule of species n.
Because each atom is also a chemical species, the number of
different species is equal to or, typically, much larger than the
number of different elements in the mixture. This is further
discussed in the Supporting Information.

It is possible to object that there are several isomers all with
the chemical formula CgH;g and therefore that each isomer has
exactly the same number of C and of H atoms. This is evidently
correct, yet it does not follow that at chemical equilibrium all
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Figure 1. Matrices X for different values of the number of degrees of freedom v (N = 10 and P = 100). The higher the value of v, the more
localized about the mean is the distribution of the rates; see text for more discussion. The results are shown as a heat map, meaning that the shade
of gray indicates the value from negative values, lighter, to positive, darker. It requires a close examination to detect trends in such maps, and this

is why the mathematical analysis that we present is useful.

of these isomers are equally likely. That different isomers can
have different concentrations is actually one of the successes
of the approach that seeks the distribution of maximal entropy
subject to constraints. The point is that the concentration of any
species has a prefactor that we prefer to call “the prior”.%” This
is the number of quantum states of that species. As Mayer and
Mayer’ emphasize, at thermal equilibrium, the partition function
is the number of effective quantum states at the temperature 7.
Different isomers have the same values for the constraints, but
they differ in the value of their partition function. This is further
discussed in the Supporting Information.

Equation 1 shows that, at thermal equilibrium, but not
necessarily otherwise, there is a linear dependence among the
Lagrange multipliers such that few multipliers (=whose number
is the number of elements) suffice to linearly determine the
multipliers for all of the species. In the Supporting Information,
we show how to transcribe this linear dependence into an
equivalent linear dependence for the constraints.

There is a second reason, well beyond the sheer number of
constraints, why we care. The conservation of the number of
molecules of each species is certainly conserved at equilibrium.
However, it will not be conserved for a finite displacement from
equilibrium. On the other hand, under nonrelativistic conditions,
the conservation of the number of elements holds whether the
system is or is not in chemical equilibrium.

In this article, we aim to generalize eq 1 with special reference
to the situations exemplified by unimolecular dissociation and
other endothermic processes where the number of reaction
channels is smaller or typically much smaller than the number
of quantum states. It is the case that this situation is at the heart
of the Lindemann mechanism of unimolecular reactions as
initially quantified by the RRK theory; see, e.g., section 11.5
of ref 8. The same idea is contained in the more recent RRKM
theory, section 11.6 idem. The energy rich molecule has many
states. In a dissociation state (=a channel), energy in excess of
some threshold energy E) is confined in a particular degree of

freedom known as the reaction coordinate. At some energy E
that is above Ej, there are necessarily as many or more states
than dissociating states.

The paucity of channels is also the rule in endothermic
reactions because, by assumption, some of the energy of the
system needs to be spent on overcoming the thermodynamic
barrier to reaction.

There are other physicochemical systems with this charac-
teristic meaning that, when you label events by two indices,
one index has a range lower than the other index. We will
specifically assume that there is a rectangular, P x N matrix,
X, such that its columns are labeled by the index of lower range
(N) and its rows by the index of wider range (P). The matrix
elements of X carry both indices. Our task is to characterize
the matrix X. In the example of unimolecular dissociation, X
is the matrix of the amplitudes for channel specific dissociation
for different states of the energy rich molecule. Moore and co-
workers’ have discussed this matrix for the dissociation of
CH,0, and we''? and others!® have also examined the
statistical properties of such matrices starting with the fluctua-
tions in spectral intensities.'* Other attempts to examine an
eigenchannel type decomposition of scattering amplitudes
include ref 15. Simple model computations are reviewed in ref
16; see also refs 17—19. Propensity rules relating states and
channels are discussed in refs 20 and 21 and references therein
with important earlier work by Troe and Quack.??

There is a rich literature dealing with random matrix theory
for characterizing the positions and widths of energy levels;
see, for example, ref 23. We emphasize that we do not assume
or imply that the matrix X belongs to a matrix ensemble. The
entries in X as considered here are the, typically computed,
amplitudes of dissociation of specific quantum states through
particular channels. Our purpose is to delineate the limitations
imposed by the physics and the mathematics of the problem.

In quantum chemistry, there is a different matrix X that is
the matrix relating the states of physical interest to the basis
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Figure 2. The entropy, in natural units, computed, points, as an average
for 100 matrices X generated by a sampling as discussed in the text,
shown vs the parameter v that determines the distribution of the rates.
See also Figure 1. As discussed in the text, the sampled matrices X for
a given value of v can vary, particularly so for lower values of the
parameter v. For each value of v, the variance of the distribution of
the values of the entropy is also shown and it is seen how the variance
strongly decreases as v increases. As the fluctuations in the possible
value of a width diminish, all of the widths converge toward more
similar values and the entropy of the distribution of the widths tends
to a higher asymptotically constant value. The curve is a smooth line
through the computed points. Note that the rates are made dimensionless
by dividing by their sum and so the trace of rates is ensured to equal
N. The results in Figure 3 are for the same case shown here and similarly
exhibit the trend toward uniformity as v increases.

states used to describe the system. The latter must be equal or
larger than the physical number of states. The physics is
different, but the rectangular nature of the matrix is the same.
Aspects of quantum chemistry are indeed being discussed
recently from an information theoretic point of view.?*?” For
a maximum entropy analysis of such matrices X, see ref 28.

Having reduced the sufficient number of constraints to the
rank N of the matrix X”X, we ask what is the necessary or
minimal number of constraints or, in mathematical terms, can
the de facto rank be even lower than N. This is a more subtle
question because it is not possible to reproduce XX by fewer
eigenvectors than its rank. However, say that we just require a
leading approximation. This will be possible if one eigenvalue
of X”X is significantly larger than all others, or it may be more
than one but fewer than N. These are sometimes called the
principal components. The number of such components is
the effective rank, as discussed in section 5. Figure 3 provides
a concrete example.

Representing the product state distribution is closely related
to the effective rank. Therefore, the two topics are discussed in
the same section below. In principle, it takes N eigenvectors of
XTX—and these are equivalent to N constraints—to exactly
describe the product state distribution. Say, however, we just
want a leading approximation. Then, the number of constraints
equals the effective rank. Often, as we show by example, it can
be that only one constraint will be sufficient. We emphasize
here that, as will be shown by the example below, the reason
why one or a few constraints suffice is tied to the physics of
the problem, as discussed for example in refs 20, 29, and 30.
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Figure 3. The 10 eigenvalues as a function of the number v of the
degrees of freedom for a system with N = 10 and P = 100. Averaged
over 100 sampling of the matrix X. The dominant eigenvalue is shown
as a thicker black curve. As v increases, all of the eigenvalues lump
together as expected, since the diagonal elements of X become more
similar; see text. The results in Figure 2 are for the same case shown
here. The behavior is as expected on theoretical grounds, but we have
verified that it remains the same for other systems by increasing the
number P of states or by sampling over 1000 matrices and (see text)
by increasing the dispersion of the diagonal elements of X”X.

2. Maximal Entropy

X is a matrix whose dimensions are the number, P, of states,
the row labels, times the number, N, of channels, the column
labels. When X represents amplitudes, the entries are often
necessarily complex numbers. We then treat the real and
complex parts separately, thereby doubling the number of
columns. The mean over the entries in each column is zero.
Otherwise, we enforce X to be mean centered. The matrix XX,
dimensions P times P, where X7 is the transpose matrix, is
mathematically the matrix of the covariances of the states.

N
(XX7),, = Zl X),,(X),, ()

= x -x
- % T

The variances are the diagonal elements. In the second line of
eq 2, we wrote the covariance between states p and ¢ as the
scalar product of two vectors where each such vector is a row
of the matrix X. Each of the N columns of X is a reading for a
different probe of the state. Therefore, we can regard X not as
a matrix but as a sample of N readings of a random vector X,
of P components. Each column of X is a particular sample of
values for X,, and is a column vector, X,, = (X1, Xope-r» Xpu)'.

In the example of an energy rich molecule at a given energy,
the vector X, is the coupling of channel n to the P states. The
row vector of N components X, as defined by eq 2 is the channel
specific amplitudes for dissociation of state p, p = 1, 2,..., P.
The matrix XX is then the rate matrix often denoted by I'.3! It
is off diagonal because states are indirectly coupled among
themselves due to their coupling to the continuum, cf. eq 2.
When we diagonalize the rate matrix, these off diagonal
elements tend to keep the eigenvalues apart. This is further
discussed in section 5.
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A multivariate normal (or Gaussian) distribution is a distribu-
tion of maximal entropy subject to given values for the mean
and the covariances (including the variances), altogether P +
P? constraints, of the random vector X,,. The probability density
for each particular set of components of X,, is normal

1
P(X,) = (X, Xy Xp,) O exp(—EXfAXn) 3)

The matrix A, where (A),, = 4,,, is the matrix of P? Lagrange
multipliers. On physical grounds, the components of the random
vector X,, have zero mean and so the distribution is symmetric
about zero.

Our technical objective is to reduce the number of Lagrange
multipliers (=the number of constraints) down not only to N?
but all the way to N, where by physical reasoning N < P and
more typically N = P. The very fact that this can be done means
that the matrix A is singular and as such has no inverse.
Therefore, the distribution (eq 3) cannot be written in the
canonical form for a normal distribution of a random vector X,

PX,) = (1/2n)"E]") exp[—%xfrlxn] 4)

The reason is that when the columns of X are mean centered
the covariance matrix is P by P and is given as XX7, cf eq 2.
However, the rank of the P by N, P > N, matrix X is N or
lower and so the matrix XX” must be singular. The inverse
matrix that appears in eq 4 cannot be the inverse of the
covariance, XX’.

At this point, we ask for the probability of joint N different
samples, meaning the probability of X, times the probability of
X, times the,..., times the probability of Xy

_1

N
P(X) = P(X,)) PX,)...PX,) O |_| exp( >
n=1

X,{Axn) (5)

Since each of the exponents in eq 5 is a number, the product of
exponentials can be written in the more conventional form

(6)

N
P(X) = exp(—% > X[AX,
n=1

Using eq 2 above, this last result can also be written in a
suggestive alternative form

1
P(X) U exp| 5 z /lpq(XXT)pq)
Pq

_ 1 T
= exp| 5 z/lpqxp-xq)
Pq

N
1
= exp ) z lpq Z xpkqu) 7
Pa

where the x,’s are the rows of the matrix X. Recall that for a
dissociating molecule each x, is the set of channel specific
amplitudes for state p, p = 1, 2, ..., P.
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In eq 7, the sum over 4,, is over P? terms and here is where
we need to reduce the number of Lagrange multipliers by
seeking a transformation to linearly independent constraints. The
required transformation begins by expressing the number that
is the exponent in eq 6 or 7 as a trace

N
PX) O exp(—% Y X/AX,
= ®)
= exp(—%Tr(XTAX))

Then, introducing an orthogonal matrix U that diagonalizes the
matrix A of Lagrange multipliers

U'AU =1 9)

so that

PX) O exp(—%Tr(XTAX))
= exp(—%Tr(XTUUTAUUTX)) (10)

= exp(—%Tr(ZT/lZ))

The new diagonal matrix 4 has at most N nonzero entries along
its diagonal. This is because the P by P covariance matrix XX7,
eq 2, is singular, since X is a P by N rectangular matrix where
N < P. Thus, XX is necessarily of rank equal or lesser than N.
The same is true for the rank of the N by N matrix X”X. This
matrix has the same nonzero eigenvalues as the bigger P by P
matrix XX7. The latter matrix has also N—P eigenvalues that
are all zero."” In linear algebra, the equality of nonzero
eigenvalues of X”X and of XX7 is sometimes known as the
Froebenius—Schur lemma.?? On physical grounds, the columns
of the matrix X have zero mean. This ensures that the matrix
X’X can have a rank that equals N. Had we mean centered the
rows of X, the rank would have been at most N — 1.

When the rank of the N by N matrix XX is N, all of the N
eigenvalues are positive. We can therefore define a nonsingular
diagonal matrix 4+ by retaining only the positive eigenvalues
of A. This matrix is invertible, and the N by N covariance matrix
is 47!

r=1'=UX'XU=2"Z (11)

When the rank of X’X is lower than N, we can still define A4
by retaining only the positive eigenvalues of A. The size of this
square matrix is the rank of X”X.

With the covariance given by eq 11, the normalized distribu-
tion, cf. eq 4, is of the form

P(X)

1/ 1z AN exp’— 2 7'x7'z,

l N
2n=l

12)

(1/2m) 12y exp[— %Tr(ZTE_IZ)]

Equation 12 defines a normal multivariate distribution, and as
such, its entropy is well-known to be given by
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N
H(z) = %]1‘1|2H‘%N In(2me) = %ln((Zne)N I—l A+n)
n=1
(13)

where X is the determinant and the N A4,’s are the positive
eigenvalues of the P by P covariance matrix whose rank is N,
N<P.

With eqs 12 and 13, we have achieved the desired reduction
in the number of Lagrange multipliers and have expressed the
entropy in terms of the remaining N. As a technical result,
we identified the values of the Lagrange multipliers with the
eigenvalues of the N by N matrix X”X. Note that this is not the
same matrix as the, far larger in dimensions, rate matrix I' =
XX” which mathematically is the covariance matrix, cf. eq 2.
On physical grounds, it is clear that for unimolecular dissociation
the number P of quasibound states exceeds by orders of
magnitude the number of internal states N at the transition state.
The reduction to no more than N Lagrange multipliers is
therefore significant.

3. Entropy and Entropy Deficiency

We computed the entropy on the assumption that, in the
absence of any constraints except normalization, the maximal
entropy is for a uniform distribution. This means that the
expression for the entropy is

H(z) = — [ dzf(z) n[f(2)] (14)

and this holds whether the distribution f{(z) is normal or not.

Next, we consider the possibility of additional constraints.
Say that we denote the normal distribution by fy(z). Let there
be a multivariate distribution f{z) that has the same mean and
covariance as fy(z). From the form of the exponent of the normal
distribution, it follows that

S dzf@) nlfm)] = [ dzfy(@ Wlfy@]  (15)

This allows us to show explicitly that the multivariate distribu-
tion f(z) either has a lower entropy or it is the normal distribution
itself. First, compute the entropy of the multivariate distribution

fiz)

H(z) = — [ dzf(z) n[f(2)]

— [ dzfz) m[fin)lfy@)] = [ dzfiz) Inlfy(2)]

— [ dzfiz) n[f(2) fy(@)] +
{= [ dzfy(@) In[fy(2)]) (16)

The second third line follows from eq 15. If therefore there are
additional constraints that we have not yet identified, the entropy
deficiency,® the difference between the entropy of the normal
distribution and of the unknown multivariate distribution (of
the same mean and variance),
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DH(z) = {— [ dzfy(2) In[fy@]} — {— [ dzfz) n[fiz)]}

= [ dzflz) n[fiz)/f(2)] (17)

needs to be finite. It can be easily shown that the entropy
deficiency has to be non-negative. The intuitive argument is
that if we are adding one or more constraints the value of the
entropy must go down from what it is for the normal multivariate
distribution because, among all distributions of the same mean
and variance, it is the distribution of maximal entropy.

Equation 14 has one feature that, at first sight, is disturbing.
The probability density f{(z) has dimensions. Specifically, the
very fact that the density is normalized

S dzfiz) =1 (18)

means that f{z) has the dimension inverse to that of zV. Therefore,
exp(H(z)) has the dimension of zV. To retain the interpretation
of entropy as information, it is therefore necessary to reexamine
the expression for the entropy of a continuous distribution.**
Or one can seek an alternative interpretation for the expression
(eq 14) of the entropy of a continuous distribution. This is
possible by adapting the definition of the entropy as a measure
of the number of typical sequences; e.g.,> see Shannon® for
the original discussion. We recall that in the discrete case when
an experiment is repeated many times some sequences of
outcomes are possible in principle and yet are extremely rare.
As a very simple example, consider tossing a biased coin that
has a higher propensity to fall head ups. The sequence TTT,...,
TTHT,... cannot be ruled out, but it is very atypical. The number
of typical sequences of N outcomes is roughly exp(NH), where
H is the entropy of the distribution of the two faces. One shows
that for a continuous distribution f(z) the dimension bearing
number exp(NH) is the volume, in N dimensional space, within
which most of the probability of observing N outcomes is
contained. Therefore, exp(H) is the “length”, of dimension z,
where most of the probability is concentrated. For a Gaussian
distribution, we expect this length to be proportional to the width
o and it is easy to verify that if we scale the length by o then
all Gaussian distributions have the same entropy. This inter-
pretation of the entropy of a continuous distribution is important
in that it plays a key role in proving the coding theorems of
information theory.*

4. A Numerical Example: Rate Constants for
Unimolecular Dissociation

As an illustration of our considerations, we return to the
example of unimolecular dissociation, with P states and N
channels, N < P. We generate a P by N matrix X of the transition
amplitudes between states and channels. For simplicity, we take
the amplitudes to be real. We draw the amplitudes in a given
channel (=given column, see discussion of eq 2) from a
Gaussian distribution of zero mean and a variance (=the partial
rate for this channel) that is sampled from a chi-squared
distribution with v degrees of freedom; see ref 12 or refs 10
and 11 for additional details. Figure 1 shows typical matrices
X using a “heat map” format, meaning that larger entries are
shown in a darker shade. The amplitudes can be negative and
by small, light shading, we mean negative entries so that about
zero is gray. The matrices are displayed for a range of values
of the parameter v that governs the number of degrees of
freedom.
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The fluctuation of rates is narrower the higher the number of
degrees of freedom v. Explicitly, the result is eq 2.28 of ref 11,
where y is the rate and the average rate is ]

Wy — BD°0= 200/ (19)

Books usually cite the width of a chi-square distribution as
increasing with v. To derive eq 19, one must distinguish between
the dimensionless variable chi-squared y? = vy/[3(and the rate;
see also eq 2.25 of ref 11. Another possible pitfall is that [¥LTis
the average rate and not the average amplitude. In our case
where the amplitudes are mean centered, [lis the variance of
the distribution of the amplitudes.

For each matrix, one can compute the entropy of the matrix
as discussed above and the results are given as a function of v
in Figure 2. The entropy increases with increasing value of v
because the fluctuation of the rates becomes narrower so that
they are all about equal and so their distribution is more uniform.
At a high value, the distribution is so narrow that the entropy
tends to an asymptotically constant value. For the same value
of v, one can generate many matrices X and these can have
somewhat different values for their entropies.*” In our problem,
this variability is because, on physical grounds, the matrices X
have a number of columns smaller than the number of rows.
Thus, sampling different matrices X can lead to different results.
The large number of rows of X, 100 in our example, much
higher in reality, suffices to sample the Gaussian distribution
for the transition amplitudes to a given channel. However, the
smaller number of columns, which is physically to be expected,
is not sufficient to sample a chi-squared distribution for a small
v. The error bars show the variance of the distribution of the
values of the entropy at a given value of v. This variance is
large for low values of v because the distribution of rates is
broad.

Complementary to the discussion of the entropy are the results
for the eigenvalues of the N by N matrix X”X. This matrix has
the same nonzero eigenvalues as the bigger P by P rate matrix
XXT. (The latter matrix has also N—P eigenvalues that are all
zero.) We find that as v increases the eigenvalues tend to a
common value. The asymptotic value of this value is the trace
of XX divided by N, the number of channels.

5. Effective Rank and the Distribution of Product States

To provide a physical application for the role of an effective
rank that is lower than the nominal rank N, we consider the
time evolution and specifically the distribution of product states.
The time evolution is governed by the entire Hamiltonian and
not just by the rate matrix. This means that it depends also on
the spacing of the energy levels; see, for example, ref 19. We
therefore reiterate the approximation that the density of states
of the energy rich polyatomic molecule is high enough that the
states form a quasicontinuum. This is often realistic for
molecules with more than a few atoms. It is then possible to
restrict attention to a set of P states that are effectively
degenerate. The Hamiltonian matrix of this isoenergetic set of
states is H = EI — iI', where I is the identity matrix.
Diagonalizing this Hamiltonian is equivalent to diagonalizing
the P by P rate matrix I' = XX7, a matrix whose rank N is
much smaller than its dimension P. N is then identified as the
number of rate constants that are not zero. All the other P—N
states are trapped.'’® In this section, we go beyond this
important result to resolve the dynamics among the N outgoing
channels. We argue that the effective rank is the number of
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channels that dominate the process. Of course, these N
channels are not necessarily the physical channels that we use
to initially define the elements of the X matrix. Rather, these
Neir channels are each a coherent linear combination of zero-
order channels. We explicitly identify these combinations below.
These combinations determine the product state distributions,
distributions that are defined over the zero-order channels. We
therefore have a tool to understand the characterization of final
states sometimes called surprisal analysis.%’

Consider a vector A, of N components. For simplicity, take
it to be real, but if it is complex, we could, just as for the matrix
X, separate it into real and imaginary parts. We think of the
components of A as the amplitudes to exit in the different N
channels. The N eigenvectors of the matrix X’X

XXz, = Az, i=1,2,..N (20)

are normalized and orthogonal, z/z; = 0;;. There is an effective
rank when the N eigenvectors separate into a group of Ny
vectors with eigenvalues 4;, i = 1,..., Neg, that are significantly
larger in magnitude. Often there is only one such runaway
eigenvalue in which case N, = 1. An example for the same
system used to generate Figures 1 and 2 is shown in Figure 3.
As is made clear by the evidence in Figure 3, whether there is
an effective rank or not depends on the specific physics. As the
system becomes more statistical as judged by the entropy
becoming higher, compare Figures 2 and 3, the dominant
eigenvalue merges with the others to get a uniform distribution
of final quantum states (as discussed in section 5 below).

Why is it quite often that if there is an effective rank it is
unity so that one eigenvector dominates? This must be a
consequence of the theorem, often attributed to Rayleigh, that
there is one eigenvalue between every two diagonal elements
of the matrix. There can be special circumstances, which must
be driven by the physics, that one or more diagonal elements
of XX are significantly bigger than the others. Then, we can
have a higher effective rank. Otherwise, only one eigenvalue
can run away. It does not have to happen, and as seen in Figure
3, it is a special case but it can happen when v < 1. We could
make Figure 3 look more dramatic by introducing more spread
in the diagonal elements of X’X, but we intentionally chose to
show a conservative example.

The eigenvectors of X”X form a complete orthonormal basis.
However, when there is an effective lower rank that is lower
than N, we might try the expansion

Negt

A= i:zla,z,., Ny=1,2,.. 1)

When N,y is small, the problem of describing the product state
distribution is reduced to the determination of N. numbers «;,
where i < Ny < N — 1. Often N can be just one in which
case one constraint suffices to well characterize the product state
distribution. Because the product state distribution is normalized,
if there is only one dominant eigenvector, we do not need to
know the corresponding coefficient o in eq 21. Since the
eigenvectors are normalized, the result A = Zgominane determines
the distribution 1A,I*> = (Zgominan)ul> 7 = 1, 2, ..., N.

6. Concluding Remarks

We discussed the distribution of the coupling of a few
outgoing channels to many more states of the system. The
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physics of the few vs the many was understood already in the
early days of the kinetics of chemical reactions, practically as
soon as one learned to count quantum states. The notion of
fluctuations in the rates came much later. Currently, there are
other systems of topical interest that can be characterized by
similar considerations. In physical chemistry, we have, for
example, ZEKE spectroscopy®® where many, many Rydberg
states are coupled to far fewer ionization channels.** The
exceptional stability of the high Rydberg states is governed by
similar considerations.*!' Other cases of slow electron emission
are reviewed in ref 42. A recent example of charge transfer is
the rate of coupling of charged quantum dots to the channels
outgoing to the electrodes. The fluctuations in this case are
reviewed in ref 43. However, one can also go outside of physical
chemistry proper. A much more complex system with similar
abstract characteristics is a cell. The membrane has a few
receptors. When stimulated, these can induce signaling pathways
where many proteins are phosphorylated.** Or, different but
usually few mutations can induce an extensive signaling
response; see, e.g., ref 46. The common feature is that few
channels are coupled to many states.

For all of these systems, we show two aspects. Mathemati-
cally, the number of constraints necessary to exactly reproduce
the output is smaller than what can be expected and the number
necessary to provide a leading approximation can be even
smaller, possibly just one.
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